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Three problems are considered. In the first, a uniform magnetic field is suddenly 
switched on outside an infinitely long circular cylinder of incompressible con- 
ducting fluid. As the field diffuses into the fluid, electric currents are generated 
and hence a Lorentz force field. Under the assumptions of small magnetic 
Reynolds number and small magnetic Prandtl number, the initial flow (before it 
has been modified by convection or viscous diffusion of vorticity) is oalculated. 
In the second problem an initially uniform field is suddenly switched off outside 
a similar cylinder of fluid. It is shown that the switching off of the field produces 
a vorticity distribution identical with that produced by the switching on. The 
third problem considered is that of a circular cylinder of conducting fluid placed 
in a rapidly alternating magnetic field. It is shown that the alternating field 
produces vorticity at  a constant rate, and a qualitative description of the resulting 
flow is given. 

1. Introduction 
The aim of this paper is to study situations in which a magnetic field is switched 

suddenly on or off around a body of conducting fluid. A magnetic field cannot 
penetrate conducting material instantaneously but diffuses in rather slowly 
(comparedwith the rate at  which changes in electromagnetic fields are propagated 
in a vacuum, i.e. the speed of light), and as it diffuses in it must cause electric 
currents to flow in the conducting material and hence produce a Lorentz force 
field. Unless this Lorentz force field happens to be irrotational, in which case it 
will simply be balanced by a pressure gradient, it will produce some kind of fluid 
motion. Whether or not the force field is irrotational depends on the geometry of 
the container and the field that is switched on outside it. In the simplest possible 
case, that of a uniform magnetic field switched on parallel to the plane surface of 
a semi-infinite body of conducting fluid, it is easy to show that the force field is 
irrotational and consequently there is no motion. So it seems that if the fluid is 
to be moved, there must be some difference between the geometry of the field and 
the geometry of the container. 

The simplest case of interest is then a uniform field switched on across an 
infinitely long circular cylinder of oonducting fluid. It is assumed throughout that 
the fluid is incompressible and that the magnetic Reynolds number R,,, is small 
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(i.e. that  the magnetic field is unaffected by the fluid flow). I n  $ 2 a solution is 
obtained for the magnetic field. The assumption of small R, means that the 
penetration time of the fluid by the magnetic field is so small that just after the 
field has diffused in the vorticity distribution produced has not yet had time to  
be modified significantly by convection. If the magnetic Praiidtl number P, is 
also assumed to be small it follows that this initial vorticity distribution will not 
be immediately modified by viscous diffusion. It then becomes a simple matter 
to  calculate this initial vorticity distribution and the streamlines of the corre- 
sponding flow. This initial flow will later be modified by convection and diffusion 
of vorticity, but the solution of this non-linear problem is not attempted here. 

If an initially uniform field is suddenly switohed off outside a body of conducting 
fluid a similar effect occurs. The diffusion of the field out of the fluid will generally 
produce vorticity. I n  fact i t  is shown in 5 3 that  in the case of an  infinitely long 
circular cylinder, the vorticity produced by the switching off of the field is 
identical with that produced by the switching on. 

It should be pointed out that of course a magnetic field cannot be instan- 
taneously switched on or off because of the self-inductance of the coils producing 
the field. The conclusions of $8 2 and 3 will be valid only if the switching on (or 
off) time is small compared with the penetration time of the fluid by the field. In  
view of this, the situation considered in $4, that of a circular cylinder of con- 
ducting fluid placed in an alternating field, is more realistic. The physical process 
driving this flow is essentially the same as in the switching on and off problems. 
The regular inward and outward diffusion of the field is a constant (in time) source 
of vorticity. 

Situations have already been analyzed which involve flows generated by the 
same basic physical process that is evident here, namely the generation of Lorentz 
forces inside a body of conducting fluid by a time-varying magnetic field. Moffatt 
(1965) considered the problem of an  infinitely long circular cylinder of conducting 
fluid placed in a rapidly rotating magnetic field, and showed that the fluid will 
rotate as a rigid body inside a viscous boundary layer. The methods of analysis 
used here are very similar to the methods used in Moffatt's paper.? 

2. Field switched on across a circular cylinder 
2.1. Diflusion of the field 

Take cylindrical polar co-ordinates ( r ,  8, z )  and suppose that the space 1' 6 a is 
filled with fluid of density p, kinematic viscosity v, and electrical conductivity v. 
At time t = 0 a uniform magnetic field B,(cos 8, - sin 8 , O )  is switched on at  r = 00. 

Let Bl(r, 8, t) denote the magnetic field outside the cylinder, and B2(r, 0, t )  the 
field inside. Since V . B, = V . B, = 0 it is possible to find stream functions and 
$2 such that 

t There is an error in equation (2.7) in Moffatt (1965) which affects equations (2.8) and 
(2.9) but none of the subsequent equations or discussion. The operator V2-  2/r2 in ( 2 . 7 )  
should be replaced by V2 - l/r2, and the order of the Bessel functions in (2.8) and (2.9) should 
bo 1, and not 42.  
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Just after the field has been switched on and before it begins to diffuse into the 
fluid, the field lines are exactly like the streamlines in the irrotational flow of an 
inviscid fluid around a solid cylinder. So the initial conditions are 

$l(r, 8 , O )  = B,(r - a2/r)  sin 8, $.Jr, 8 , O )  = 0. (2.1) 

It will be assumed that the magnetic Reynolds number of the flow is small, and 
under this assumption it is legitimate to neglect any effect associated with the 
fluid motion, and the equations satisfied by the magnetic field are 

v2$, = 0, my2 = a*2/at, (2.2~2, b )  

where h = 1/(p0v). The magnetic field must be continuous at  the edge of the 
fluid cylinder and this provides the matching conditions 

At large distances from the fluid cylinder the field must tend to become uniform, so 

$r,+Borsin8 as r + m .  (2.4) 
If one now writes: 

+l = f l ( r ,  t )  sin 8, 
the functions fl and f2 must satisfy the following conditions: 

$2 = f 2 ( r ,  t )  sin 8, 

fl(Y, 0) = B,(r - a2/r), f2(r, 0) = 0, (2.1’) 

fl(r,t) +Bar as r + 00. 

The first of equations (2.2’) and condition (2.4’) imply 

flP, t )  = Bo[r-A(t)/rI, 

(2 .2’ )  

(2.3’) 

(2.4’) 

where A(t)  is an arbitrary function of time. Let F2(r,p)  denote the Laplace trans- 
form (in t )  offi(r, t ) .  The solution of the Laplace transform of the second of (2.2’) is 

F2(r,2)) = B ( p )  J l ( i (P l44  4 ,  
where B ( p )  is an arbitrary function of p .  A(t)  and B ( p )  may be calculated using 
the matching conditions (2.3‘) with the final result 

This Laplace transform may be inverted by contour integration to give 

where the An are the positive zeros of J,(x). The Lorentz force field, j x B, can now 
be calculated, and hence the fluid motion. 

52-2 
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2.2 .  Vorticity generated by the rotational Lorentz force 

The curl of the Navier-Stokes equation is 

ao /a t+(u .v)w = ( i / p ) v x  (j x B ) + V V ~ U ,  

where o( = V x u) is the vorticity. NOW 

where U is a typical value of the fluid speed. The time scale used here is a2/h which 
is the time scale for the inward diffusion of the magnetic field. The magnetic 
Reynolds number has already been assumed to  be small, so the oonvective term 
in (2.6) may be neglected in comparison with the first term. Also 

and since v /h  < 1 for all liquid metals and electrolytes, the term v V 2 0  in (2.6) will 
also be neglected. The physical meaning of these approximations is that the 
magnetic field diffuses into the fluid so quickly that the vorticity generated does 
not have time to be convected away or to diffuse away. With these approxima- 
tions (2.6) takes the form 

This equation is valid only for a time of order a2/h after the magnetic field has 
been switched on. After the field has diffused in, the vorticity generated is con- 
vected and diffuses away, but the time scale for this process is much longer. 

Integrating (2.7) with respect to t between the limits of 0 and co and using the 
expression for B given by (2.5) gives (after a little algebra and summation of 
series by contour integration) 

awlat = (i/p) v x (j x B). (2.7) 

A graph of w( r ,  00) as a function of r is shown in figure 1 (a). This represents the 
vorticity generated in the fluid just after the magnetic field has diffused in, and 
before the pattern has been modified by diffusion and convection. 

Eventually this vorticity will be destroyed by viscosity, and also by the 
Lorentz forces due to the electric currents induced by the flow. The decay time 
due to viscosity is of order aZ/v  and the decay time due to the Lorentz forces is of 
order p/aBi. 

2.3. Stream function of the initialJlow 

The next step is to calculate the fluid flow that corresponds to this distribution of 
vorticity. The flow is two-dimensional and the fluid is assumed to be incom- 
pressible, so there exists a stream function x such that 

Now, 
U, = ( l / r )  axiae, ue = - ax/ar. 

V2,y = - w, = - f ( r )  sin 28, 
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where f ( r )  is the coefficient of sin 28 given by (2.8). Writing 

x = g(r) sin 28 
gives the equation 

82 1 

FIGURE 1 

for determining g. The two boundary conditions on g are that g(0) is finite and 
g(a) = 0 (i.e. that the edge of the fluid cylinder must be a streamline). The final 
solution is then: 
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The streamlines for this initial flow are sketched in figure 1 (b) .  The main feature 
is that there are four eddies, one in each of the quadrants of the circular cross- 
section of the cylinder. 

It is now possible to find the precise conditions for the validity of the low 
magnetic Reynolds number assumption. The fluid speed produced is of order 

R, = B: a2/po hzp. 
BWIICO~P so 

For a cylinder of mercury of radius 1 0-1 m 

R, < 1 o B, < 1.3 webers/m2 or 13 000 gauss. 

Only if the field strength is of order 1 weber/m2 or greater need the further 
distortion of the field by the fluid be taken into account. For an electrolyte, the 
condition R, < 1 would invariably be satisfied in situations of practical interest. 

3. The effect of switching off an initially uniform field 
It is now interesting to look at  the way in which the magnetic field diffuses out 

of the fluid again when the external magnetic field is suddenly switched off. Let 
$:(r, 8, t )  and $:(r, 8, t )  be the stream functions for the magnetic field outside 
and inside the cylinder. Just after the field has been switched off and before it 
begins to diffuse out, there will be a uniform field with stream function B,rsin8 
inside the cylinder and a dipole field with stream function Bo(a2/r) sin 8 outside. 
$: and $: must then satisfy the following: 

$F(r, 8 , O )  = Bo(cc2/r) sin8, $-,*(r, 8 , O )  = B,r sin 8, (3.1) 

vz$; = 0, AV~$: = a$;/at, (3 .2 )  

$ F + O  as r + a .  (3 .4)  

When one compares these equations with (2.1), (2.2), (2.3) and (2.4) it  is clear 
that the solution for 4: and $-,* is 

$r: = B,rsinB-$l, = B,,rsinO-$,. 

Now it is possible to  show that the diffusing out of the field produces exactly 
the same vorticity distribution as the diffusing in. The magnetic field may be 
divided into two parts, a uniform field B,, and a time dependent part b with 
stream function 

The field diffusing in is given by 

and diffusing out it is given by 
B = B,+b 

B = - b .  
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As the field diffuses in, the current density is j( = ( l / po )  V x b) which produces 
a vorticity field 

P o  'SmVx{jx(Bo+b)}dt ,  

and as the field diffuses out, the current is - j, producing a vorticity field 

P o  l / m V x ( j x b ) d t .  

To prove these expressions are equal one must show that 

JOmv x (j x B,) dt = 0. 

Since B, is independent of t ,  and both B, and J -- j dt are solenoidal, 
0 

00 

/ o ~ V x ( j x B o ) d t = V x ( / o m j d t x B o )  = (B,.V)/ 0 jdt. 

j has only a z component and 
1 

PO 
j = - - V z  $2. 

From ( 2 . 2 b )  a$.,lat = AVZ$-,, 

and integrating this equation with respect to t between the limits of 0 and 00 gives 

+&, 0, a) - +.,(r, 0,O) = - poh 

Thus 

and 

1 Bo Y 
Po A PO A 

j,dt = --B,rsin0 = -- 

If then a magnetic field is switched on outside the cylinder and left switched on 
for a time long enough for the field to diffuse into the fluid but not long enough 
for the vorticity generated to be convected or to diffuse away (i.e. for a time large 
compared with a2/h but small compared with a2/hR,,, or a2/hP) and then switched 
off again, the flow produced will be the same as that described by figure 1 except 
that the fluid speeds are doubled. This process of switching the field on and off 
may be repeated a number of times and each time this flow will be increased in 
strength. This may be continued until convection and diffusion of vorticity 
begin to modify the flow pattern and an eventual steady state will be reached. 

To get an idea of the speed that can be generated in the fluid in this way, suppose 
that the magnetic field is left switched on for a time of order a2/h. A steady state 
will be reached when the average rate of generation of vorticity is balanced by the 
viscous diffusion of vorticity, i.e. when 
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For mercury in a pipe of radius 10-1 m and a magnetic field of 10-1 webers/m2 this 
speed is lo5 m/sec. For hydrochloric acid solution in the same pipe and with the 
same field strength this speed is again los m/sec. In  each case of course the flow 
would become turbulent long before these speeds were reached, and the condition 
R, -g 1 would be violated in the case of mercury. 

4. Circular cylinder in an alternating field 
We now turn to the case in which an alternating (sinusoidal) field of fixed 

direction is applied outside a circular cylinder of conducting fluid. It will be 
assumed that the frequency w of the field is large compared with h/a2 so that the 
magnetic field will be confined to a thin layer around the edge of the cylinder. 

Take the same Go-ordinate system as before, and suppose that at large distances 
from the cylinder, the magnetic field is of the form: 

9{B,(cos 8, - sin 8) eiwt}. (4.1) 

It is then natural to assume that the stream functions for B outside and inside 
the fluid, $l(r ,  8, t) and $,Cry 8, t )  take the form 

$l = W{B,f,(r) sin 8 eiwt}, $, = W{B,f,(r) sin 8 eiwt}, 

wheref, andf, may be complex. In  view of the f i s t  of (2.2’) and (4.1)) 

fdr) = r+B/r ,  

where B is an arbitrary constant. The second of (2.2’) implies that 

where a2 = -iw/h and C is a constant. The boundary conditions (2.3’) can be 
used to evaluate the constants B and C with the final result 

At this point it is convenient to use the assumption that the field is alternating 
very rapidly, i.e. 

It is now possible to obtain the following approximate expression for $, using the 
asymptotic expansion for Bessel functions of large arguments. 

2t  a t 
$2 = B, (;) e-p(a-r) cos < sin 0,  (4.3) 

where ,8 = (wI2h): and < = p(r  - a)  + wt - in. 
The curl of the Lorentz force can now be calculated and 

(This equation is almost identical with equation (2.15) of Moffatt (1965).) It is 
interesting that this last expression is independent of <, and hence oft. This means 
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that vorticity is being generated at  a constant rate in a thin layer (of thickness of 
order p-1) around the surface of the cylinder. This vorticity will diffuse into the 
fluid and eventually set up some kind of steady flow pattern. In  the calculation 
of this flow pattern, there are two separate cases to consider, that of low Reynolds 
number and that of high Reynolds number. 

Case I: Low Reynolds number 

In  this case the equation of vorticity takes the linear form 

(l/p) V x (j x B) + uV2w = 0. 

In  terms of the stream function x for u this may be written as 

The right-hand side of this equation is very small except in a thin layer around the 
edge of the cylinder and, in this layer, ajar B a/aO so the equation may be 
approximated by 

The solution of this equation that satisfies the two boundary conditions: 
(x),=, = 0 (that the pipe wall must be a streamline) and (aX/ar),.,, = 0 (the no-slin 
condition at the pipe wall) is 

Again, the mosC important feature of the streamline pattern is that there are 
four eddies in each of the four quadrants of the circular cross-section of the 
cylinder. 

The assumption R < 1 requires that, for example, for a pipe of mercury of 
radius 10-1 m, the flow speeds must be much less that m/sec, and for the 
same pipe of hydrochloric acid the speeds must be much less than 10-5mjsec. 
So it seems more interesting and realistic to consider the case of high Reynolds 
number. 

Case 11: High Reynolds number 

It is more difficult to determine the flow in this case since the equation of motion 
is non-linear. Perhaps the best way to get a picture of the flow is to trace its 
development from the moment of switching-on of the alternating field. Figure 2 
describes schematically the flow produced in a cylinder of conducting fluid when 
a magnetic field has been switched on outside the cylinder for a time which is 
short compared with a2/h (the penetration-time of the cylinder by the magnetic 
field). Figure 2 (a) shows the vorticity distribution, which can be calculated from 
the formulae in 8 2. The vorticity is effectively confined to the layer along the 
edge of the cylinder into which the magnetic field has had time to diffuse. Figure 
2 ( b )  shows the streamlines that correspond to this distribution of vorticity. 
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Outside the magnetic penetration layer, there is no vorticity and the velocity 
stream function is proportional to  r2sin 28. If the applied field continues to 
oscillate rapidly, one would expect the streamline pattern to maintain the same 
general shape, while the flow speeds increase. Eventually, when a steady state is 

(b) 

reached, some vorticity must have diffused and been convected from the magnetic 
penetration layer into the interior of the cylinder, and the streamlines will then 
be somewhat different in shape from figure 2 (b ) .  It is also possible that some 
streamlines may no longer pass through the boundary layer. If such a region of 
closed streamline forms in the interior of the cylinder, it follows from a theorem 
of Batchelor (1956) that the vorticity there must be uniform. 

In  any case it is possible to obtain an estimate of the flow speeds generated in 
the cylinder. The Navier-Stokes equation for steady flow may be written in the 
form o x u = - V(+u2 +(PIP) + (l/p) j x B + uV2u. 
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If L (figure 2 ( b ) )  is a streamline passing through the magnetic penetration layer, 
then the line integral of this equation around L gives 

where X is the area enclosed by L. Replacing each term of this last equation by 
an order of magnitude gives 

B$/,u,, = O(pup2aU) and U = O(/3g/,u0apvp2). 

It is interesting that this order of magnitude is the same as that for the low 
Reynolds number case. This is to  be expected since it is the magnetic boundary 
layer which drives the flow, and in this layer there is essentially a balance between 
viscous and magnetic forces, which is demonstrated in (4.5). 

If pa = 10n, then for a pipe of mercury of radius 10-1 m and a field strength of 
10-1 webers/m2, a typical flow speed is 107-2nm/sec. The assumption o $ h/a2 
implies that n 2 1.  n = 1 gives a flow speed of lo5 m/sec, but of course the flow 
would become turbulent and the condition R, < 1 would be violated before such 
a speed could be attained. 

5. Conclusion 
It has been shown that switching magnetic fields on and off outside a pipe of 

conducting fluid, or placing the pipe in an alternating field, will produce motion 
in the fluid in the form of four cylindrical eddies, one in each quadrant of the 
cross-section of the pipe. The flow speeds that are produced in this way are large 
enough to be observed experimentally, using either mercury or an electrolyte as 
the conducting fluid, so this should provide a good opportunity of comparing 
magnetohydrodynamic theory and experiment. Of course it is not possible to 
switch on a magnetic field instantaneously (because of the self-inductance of the 
coils) but provided the switching-on time is much smaller than the time for con- 
vection ofvorticity (a/Uo) or viscous diffusion of vorticity (a2/v) the flow patterm 
should not be too different from those described in figure 1. 

I wish to acknowledge the valuable help of Dr H. K. Moffatt in suggesting these 
problems to me and also in assisting me in their solution. I am also grateful to 
Dr J. C. R. Hunt and Professor J. A. Shercliff who drew my attention t o  several 
mistakes in the original version of this paper. 
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